Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202400169, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578649

RESUMO

The design and synthesis of polyhedra using coordination-driven self-assembly has been an intriguing research area for synthetic chemists. Metal-organic polyhedra are a class of intricate molecular architectures that have garnered significant attention in the literature due to their diverse structures and potential applications. Hereby, we report Cu-MOP, a bifunctional metal-organic cuboctahedra built using 2,6-dimethylpyridine-3,5-dicarboxylic acid and copper acetate at room temperature. The presence of both Lewis basic pyridine groups and Lewis acidic copper sites imparts catalytic activity to Cu-MOP for the tandem one-pot deacetalization-Knoevenagel/Henry reactions. The effect of solvent system and time duration on the yields of the reactions was studied, and the results illustrate the promising potential of these metal-organic cuboctahedra, also known as nanoballs for applications in catalysis.

2.
Dalton Trans ; 53(10): 4406-4411, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38379516

RESUMO

MIL-53 represents one of the most notable metal-organic frameworks given its unique structural flexibility and remarkable thermal stability. In this study, a shaker-type ball milling method has been developed into a facile and generalizable synthetic strategy to access a family of MIL-53 type materials under ambient conditions. During the explorations of [M(OH)(fumarate)] (M = Al, Ga, and In), we report a positive correlation between the metal-ligand (M-L) bond reversibility and the size of resultant crystallites under the mechanochemical process. The more kinetically labile the M-L bond is, the larger the afforded crystallite size is.

3.
Mikrochim Acta ; 191(2): 100, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231429

RESUMO

The synthesis and characterization of two new porphyrin-based porous organic polymers (POPs) via Sonogashira cross-coupling reaction and leverage the two obtained POPs is reported for the fabrication of electrochemical aptasensors to detect kanamycin at an ultratrace level. The resultant electrochemical aptasensor demonstrates a high linear relationship with the logarithmic value of kanamycin concentration in the range 5 × 10-5-5 µg/L with the limit of detection of 17.6 pg/L or 36.3 fM. During the analysis of real samples from milk and river, a relative standard deviation of less than 4.39%, and good recovery values in the range 97.0-105% were obtained.

4.
Inorg Chem ; 62(8): 3333-3337, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36790323

RESUMO

Mechanochemistry, a resurging synthetic approach, has been developed into an effective and controllable method to access a family of crystalline porous catechol-derived metal-organic frameworks (MOFs) for the first time. We have identified that the obtained crystalline phase is readily tunable by precursors and the addition of solvents or drying agents. The described mechanochemistry allows us to synthesize these materials in a highly sustainable manner. Thus, mechanochemistry is expected to pave a promising avenue to access a broader class of MOF materials, in addition to those based on the motifs of carboxylic acid or imidazole.

5.
Inorg Chem ; 60(21): 16079-16084, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647742

RESUMO

Mechanochemical synthesis is emerging as an environmentally friendly yet efficient approach to preparing metal-organic frameworks (MOFs). Herein, we report our systematic investigation on the mechanochemical syntheses of Group 4 element-based MOFs. The developed mechanochemistry allows us to synthesize a family of Hf4O4(OH)4(OOC)12-based MOFs. Integrating [Zr6O4(OH)4(OAc)12]2 and [Hf6O4(OH)4(OAc)12]2 under the mechanochemical conditions leads to a unique family of cluster-precise multimetallic MOFs that cannot be accessed by the conventional solvothermal synthesis. Extensive efforts have not yielded an effective pathway for preparing TiIV-derived MOFs, tentatively because of the relatively low Ti-O bond dissociation energy.

6.
Chem Commun (Camb) ; 57(59): 7248-7251, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34190245

RESUMO

We report a synthetic strategy to integrate discrete coordination cages into extended porous materials by decorating opposite charges on the singular cage, which offers multidirectional electrostatic forces among cages and leads to a porous supramolecular ionic solid. The resulting material is non-centrosymmetric and affords a piezoelectric coefficient of 8.19 pC N-1, higher than that of the wurtzite ZnO.

7.
Front Psychol ; 12: 608359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643136

RESUMO

Teacher support (TS) makes students feel loved and cared for because they believe that their teachers will provide them with opportunities to make choices, support them in independent problem solving, and understand their inner feelings. High TS levels reduce depression and anxiety, thereby improving students' mental well-being. This cross-sectional study involved 3,573 students from 29 schools in 16 counties/cities of six provinces, namely, Guizhou, Hubei, Jiangxi, Shanxi, Sichuan, and Yunnan. The aim was to examine the impact of TS on students' level of depression. The results indicated that for children in elementary schools, their status as left-behind children (LBC) played a moderating role between TS and depression. The level of depression in non-LBC children decreased significantly with increases in TS, but the reduction for LBC children was not significant. For children in middle/junior high schools, their LBC status did not play a moderating role between TS and depression. TS was negatively correlated with the children's level of depression, but there was a significant positive relationship between their LBC status and depression. The theoretical and practical significance of the research findings were further discussed.

8.
ChemSusChem ; 13(23): 6273-6277, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32743964

RESUMO

A photoactive porphyrinic metal-organic framework (MOF) has been prepared by exchanging Ti into a Zr-based MOF precursor. The resultant mixed-metal Ti/Zr porphyrinic MOF demonstrates much-improved efficiency for gas-phase CO2 photoreduction into CH4 and CO under visible-light irradiation using water vapor compared to the parent Zr-MOF. Insightful studies have been conducted to probe the photocatalysis processes. This work provides the first example of gas-phase CO2 photoreduction into methane without organic sacrificial agents on a MOF platform, thereby paving an avenue for developing MOF-based photocatalysts for application in CO2 photoreduction and other types of photoreactions.

9.
Dalton Trans ; 49(45): 16077-16081, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32677645

RESUMO

Methods to incorporate kinetically inert metal nodes and highly basic ligands into single-crystalline metal-organic frameworks (MOFs) are scarce, which prevents synthesis and systematic variation of many potential heterogeneous catalyst materials. Here we demonstrate that metallopolymerization of kinetically inert Ru2 metallomonomers via labile Ag-N bonds provides access to a family of atomically precise single-crystalline Ru2-based coordination polymers with varied network topology and primary coordination sphere.

10.
Angew Chem Int Ed Engl ; 59(27): 10878-10883, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32250511

RESUMO

Atomistic control of the coordination environment of lattice ions and the distribution of metal sites within crystalline mixed-metal coordination polymers remain significant synthetic challenges. Herein is reported the mechanochemical synthesis of a reticular family of crystalline heterobimetallic metal-organic frameworks (MOFs) is now achieved by polymerization of molecular Ru2 [II,III] complexes, featuring unprotected carboxylic acid substituents, with Cu(OAc)2 . The resulting crystalline heterobimetallic MOFs are solid solutions of Ru2 and Cu2 sites housed within [M3 L2 ] phases. The developed mechanochemical strategy is modular and allows for systematic control of the primary coordination sphere of the Ru2 sites within an isoreticular family of materials. This strategy is anticipated to provide a rational approach to atomically precise mixed-metal materials.

11.
J Am Chem Soc ; 141(49): 19203-19207, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31782924

RESUMO

The porosity and synthetic tunability of metal-organic frameworks (MOFs) has motivated interest in application of these materials as designer heterogeneous catalysts. While understanding substrate mobility in these materials is critical to the rational development of highly active catalyst platforms, experimental data are rarely available. Here we demonstrate kinetic isotope effect (KIE) analysis enables direct evaluation of the extent of substrate confinement as a function of material mesoporosity. Further, we provide evidence that suggests substrate confinement within a microporous Ru2-based MOF gives rise to quantum tunneling during interstitial C-H amination. The reported data provide the first evidence for tunneling during interstitial MOF chemistry and illustrate an experimental strategy to evaluate the impact of material structure on substrate mobility in porous catalysts.

12.
Inorg Chem ; 58(16): 10543-10553, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31241320

RESUMO

Hypervalent iodine compounds formally feature expanded valence shells at iodine. These reagents are broadly used in synthetic chemistry due to the ability to participate in well-defined oxidation-reduction processes and because the ligand-exchange chemistry intrinsic to the hypervalent center allows hypervalent iodine compounds to be applied to a broad array of oxidative substrate functionalization reactions. We recently developed methods to generate these compounds from O2 that are predicated on diverting reactive intermediates of aldehyde autoxidation toward the oxidation of aryl iodides. Coupling the aerobic oxidation of aryl iodides with catalysts that effect C-H bond oxidation would provide a strategy to achieve aerobic C-H oxidation chemistry. In this Forum Article, we discuss the aspects of hypervalent iodine chemistry and bonding that render this class of reagents attractive lynchpins for aerobic oxidation chemistry. We then discuss the oxidation processes relevant to the aerobic preparation of 2-(tert-butylsulfonyl)iodosylbenzene, which is a popular hypervalent iodine reagent for use with porous metal-organic framework (MOF)-based catalysts because it displays significantly enhanced solubility as compared with unsubstituted iodosylbenzene. We demonstrate that popular synthetic methods to this reagent often provide material that displays unpredictable disproportionation behavior due to the presence of trace impurities. We provide a revised synthetic route that avoids impurities common in the reported methods and provides access to material that displays predictable stability. Finally, we describe the coordination chemistry of hypervalent iodine compounds with metal clusters relevant to MOF chemistry and discuss the potential implications of this coordination chemistry to catalysis in MOF scaffolds.

13.
Chem Sci ; 10(6): 1823-1830, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30842850

RESUMO

Evaluation of the potential for metal-metal (M-M) cooperation to enable catalysis requires access to specific polynuclear aggregates that display appropriate geometry and size. In many cases, exerting synthetic control over the aggregation of simple metal salts is a challenge. For example, Pd(ii) acetate self assembles as a trimer (i.e. Pd3(OAc)6) both in the solid state and in solution and does not feature close Pd-Pd interactions. Related carboxylate-supported Pd2 aggregates (i.e. Pd2(OAc)4), which would feature close Pd-Pd interactions, are thermodynamically metastable in solution phase and thus largely unavailable. Here we demonstrate ion metathesis within pre-formed metal-organic frameworks (MOFs) to prepare metastable Pd2 tetracarboxylates sites. The newly synthesized materials are characterized by elemental analysis, PXRD, SCXRD, EXAFS, XANES, and gas adsorption analysis. In addition, the critical role of network solvation on the kinetics of ion metathesis was revealed by coupled TGA-MS and ICP-MS experiments. The demonstration of templated ion metathesis to generate specific metastable coordination sites that are inaccessible in solution phase chemistry represents a new opportunity to interrogate the chemistry of specific polynuclear metal aggregates.

14.
Chemistry ; 25(14): 3465-3476, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30335210

RESUMO

The potential to exert atomistic control over the structure of site-isolated catalyst sites, as well as the topology and chemical environment of interstitial pore spaces, has inspired efforts to apply porous metal-organic frameworks (MOFs) as catalysts for fine chemical synthesis. In analogy to enzyme-catalyzed reactions, MOF catalysts have been proposed as platforms in which substrate confinement could be used to achieve chemo- and stereoselectivities that are orthogonal to solution-phase catalysts. In order to leverage the tunable pore topology of MOFs to impact catalyst selectivity, catalysis must proceed at interstitial catalyst sites, rather than at solvent-exposed interfacial sites. This Minireview addresses challenges inherent to interstitial MOF catalysis by 1) describing the diffusional processes available to sorbates in porous materials, 2) discussing critical factors that impact the diffusion rate of substrates in porous materials, and 3) presenting in operando experimental strategies to assess the relative rates of substrate diffusion and catalyst turnover in MOF catalysis. It is anticipated that the continued development of in operando tools to evaluate substrate diffusion in porous catalysts will advance the application of these materials in fine chemical synthesis.

15.
ACS Cent Sci ; 4(9): 1194-1200, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30276253

RESUMO

Understanding the effect of gas molecules on the framework structures upon gas sorption in porous materials is highly desirable for the development of gas storage and separation technologies. However, this remains challenging for flexible metal-organic frameworks (MOFs) which feature "gate-opening/gate-closing" or "breathing" sorption behaviors under external stimuli. Herein, we report such a flexible Cd-MOF that exhibits "gating effect" upon CO2 sorption. The ability of the desolvated flexible Cd-MOF to retain crystal singularity under high pressure enables the direct visualization of the reversible closed-/open-pore states before and after the structural transformation as induced by CO2 adsorption/desorption through in situ single-crystal X-ray diffraction experiments. The binding sites of CO2 molecules within the flexible MOF under high pressure and room temperature have also been identified via combined in situ single-crystal X-ray diffraction and powder X-ray diffraction studies, facilitating the elucidation of the states observed during gate-opening/gate-closing behaviors. Our work therefore lays a foundation to understand the high-pressure gas sorption within flexible MOFs at ambient temperature, which will help to improve the design efforts of new flexible MOFs for applications in responsive gas sorption and separation.

16.
Angew Chem Int Ed Engl ; 57(20): 5684-5689, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29575465

RESUMO

Herein, we report that a new flexible coordination network, NiL2 (L=4-(4-pyridyl)-biphenyl-4-carboxylic acid), with diamondoid topology switches between non-porous (closed) and several porous (open) phases at specific CO2 and CH4 pressures. These phases are manifested by multi-step low-pressure isotherms for CO2 or a single-step high-pressure isotherm for CH4 . The potential methane working capacity of NiL2 approaches that of compressed natural gas but at much lower pressures. The guest-induced phase transitions of NiL2 were studied by single-crystal XRD, in situ variable pressure powder XRD, synchrotron powder XRD, pressure-gradient differential scanning calorimetry (P-DSC), and molecular modeling. The detailed structural information provides insight into the extreme flexibility of NiL2 . Specifically, the extended linker ligand, L, undergoes ligand contortion and interactions between interpenetrated networks or sorbate-sorbent interactions enable the observed switching.

17.
Angew Chem Int Ed Engl ; 57(14): 3676-3681, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29425399

RESUMO

Metal-organic frameworks (MOFs) have garnered substantial interest as platforms for site-isolated catalysis. Efficient diffusion of small-molecule substrates to interstitial lattice-confined catalyst sites is critical to leveraging unique opportunities of these materials as catalysts. Understanding the rates of substrate diffusion in MOFs is challenging, and few in situ chemical tools are available to evaluate substrate diffusion during interstitial MOF chemistry. Herein, we demonstrate nitrogen atom transfer (NAT) from a lattice-confined Ru2 nitride to toluene to generate benzylamine. We use the comparison of the intramolecular deuterium kinetic isotope effect (KIE), determined for amination of a partially deuterated substrate, with the intermolecular KIE, determined by competitive amination of a mixture of perdeuterated and undeuterated substrates, to establish the relative rates of substrate diffusion and interstitial chemistry. We anticipate that the developed KIE-based experiments will contribute to the development of porous materials for group-transfer catalysis.

18.
Chem Commun (Camb) ; 54(10): 1170-1173, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29264595

RESUMO

A new porous metal-metalloporphyrin framework, MMPF-10, has been constructed from an octatopic porphyrin ligand, which links copper paddlewheel units to form a framework with fmj topology. In situ metallation of the porphyrin ligands provides MMPF-10 with two unique accessible Cu(ii) centers. This allows it to behave as an efficient Lewis acid catalyst in the first reported reaction of CO2 with aziridines to synthesize oxazolidinones catalyzed by an MMPF.

19.
ACS Appl Mater Interfaces ; 8(45): 31403-31412, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27768293

RESUMO

Metal-organic frameworks (MOFs) deposited from solution have the potential to form 2-dimensional supramolecular thin films suitable for molecular electronic applications. However, the main challenges lie in achieving selective attachment to the substrate surface, and the integration of organic conductive ligands into the MOF structure to achieve conductivity. The presented results demonstrate that photoemission spectroscopy combined with preparation in a system-attached glovebox can be used to characterize the electronic structure of such systems. The presented results demonstrate that porphyrin-based 2D MOF structures can be produced and that they exhibit similar electronic structure to that of corresponding conventional porphyrin thin films. Porphyrin MOF multilayer thin films were grown on Au substrates prefunctionalized with 4-mercaptopyridine (MP) via incubation in a glovebox, which was connected to an ultrahigh vacuum system outfitted with photoelectron spectroscopy. The thin film growth process was carried out in several sequential steps. In between individual steps the surface was characterized by photoemission spectroscopy to determine the valence bands and evaluate the growth mode of the film. A comprehensive evaluation of X-ray photoemission spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and inverse photoemission spectroscopy (IPES) data was performed and correlated with density functional theory (DFT) calculations of the density of states (DOS) of the films involved to yield the molecular-level insights into the growth and the electronic properties of MOF-based 2D thin films.

20.
Nat Commun ; 7: 13300, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796363

RESUMO

The sophisticated control of surface wettability for target-specific applications has attracted widespread interest for use in a plethora of applications. Despite the recent advances in modification of non-porous materials, surface wettability control of porous materials, particularly single crystalline, remains undeveloped. Here we contribute a general method to impart amphiphobicity on single-crystalline porous materials as demonstrated by chemically coating the exterior of metal-organic framework (MOF) crystals with an amphiphobic surface. As amphiphobic porous materials, the resultant MOF crystals exhibit both superhydrophobicity and oleophobicity in addition to retaining high crystallinity and intact porosity. The chemical shielding effect resulting from the amphiphobicity of the MOFs is illustrated by their performances in water/organic vapour adsorption, as well as long-term ultrastability under highly humidified CO2 environments and exceptional chemical stability in acid/base aqueous solutions. Our work thereby pioneers a perspective to protect crystalline porous materials under various chemical environments for numerous applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA